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Abstract 
 
Multi-scale methods of microheterogeneous fibre reinforced plastic material are used for the analysis 
of thick laminated composite structures with hundreds of layers through the cross-section such as for 
high pressure vessels. The conventional approach with the layerwise discretization of the laminate is 
often impractical, especially for non-linear step-by-step analysis due to inelastic behavior and transient 
effects. The overall behavior of thick multi-layered fiber-reinforced composite structures is accurately 
predicted by micro-mechanical homogenization at the fibre-matrix level and meso-mechanical 
homogenization at the laminate level. The meso-level laminate analysis is based on the 3D failure 
criteria of Puck and anisotropic continuum damage mechanics. Both approaches are in good 
agreement with each other as well as with experimental results. 
 
1. Introduction 
 
Structural analysis inevitably requires constitutive models linking the kinematic and equilibrium 
equations mathematically. Though, it is not always obvious how to describe a specific constitutive 
behavior by phenomenological models appropriately. This holds true particularly in the case of 
anisotropic composite materials which show load dependent anisotropic damage evolution with 
different modes of failure. Multi- or two-scale approaches mean a useful tool for characterizing the 
effective constitutive behavior of micro-heterogeneous materials from the solution of microscale 
boundary value problems. The anisotropic constitutive behavior at the larger scale results from the 
interactions of the small scale components. Micromechanical models, as used here, base on the 
concept of the statistically representative volume element (RVE), which can be regarded as a sample 
of the microstructure found by zooming in at the vicinity of a large scale material point �, see Fig. 1. 
The practical application of multi-scale approaches requires numerical methods for discretizing and 
analyzing boundary value problems (BVP) on each scale under consideration.  

 
Figure 1. Schematic sketch of two scale analysis 



 

 

 
The macroscopic structural level is discretized by the finite element method in this work. Since the 
constitutive equations are needed at every integration point of the macro structural finite element 
discretization, the maximum number of discrete microscale models to be solved is equal to the total 
number of integration points of the macro model. Hence, high numerical efficiency of micro modeling 
is essential. For this reason, the reformulated Generalized Method of Cells (GMC) is applied here, [1]. 
The original strain based version of the GMC by [2] has the potential of a numerically much more 
efficient reformulation without loss of accuracy. For higher resolutions of the microscale stress fields, 
the High Fidelity Generalized Method of Cells (HFGMC) was developed, see [3] and [4]. Though, the 
improved resolution of stresses by the HFGMC decreases the numerical efficiency. Applying the 
GMC seems a reasonable compromise between the conflicting targets of fidelity and efficiency. The 
information from the macro- to the microscale is transferred by prescribing the microscopic 
displacement boundary conditions (BCs) dependent on the macroscopic strain tensor ���at the 
integration point �. Alternatively, stress boundary conditions might be formulated in terms of the 
macro-stress tensor. In the reverse direction, large scale variables �� (scalars, vectors or tensors) are 
commonly defined as the volume average ��� of the corresponding small scale field ��	
�: 
                                          �� 
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 � �	��                                              (1-1) 

 
with |����| as the content of the volume of the RVE, 
 as the position vector of a material point, and � 
as the domain of the RVE. It is emphasized that definition (1-1) holds for the macroscopic strain only 
in the case of a continuous displacement field !�. Otherwise, the macro-strain is obtained as: 
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with internal surfaces Γ+ � ,Ω� - ,Ω# 	normal ' � '4�5with respect to phase Ω�� and displace-
ment jumps $!% � !|>Ω? "  !|>Ω?, see Fig. 2 and [5]. The homogenized effective constitutive tensor, @AB�C , on the large scale is defined as:  
                                               @AB�C : �  �|����| � >EF	
�>�G����  d�                                                                 (1-3) 

 
Figure 2. RVE with phases Ω�, inclusions of phase Ω#, and internal material interfaces Γ+  

 

2. Micromechanical analysis with the Generalized Method of Cells 
 
The Generalized Method of Cells (GMC) is based on the concept of the representative volume element 
which is a statistically representative patch of the heterogeneous medium. It transforms the mechanical 
quantities �� from the micro to the macro level �� by averaging the variables over the volume ���� 
of the RVE, see (1-1). In the case of a nonlinear behavior of the bonding or the nascency and evolution 
of cracks, the average phase strain ��	��� of the material phase 	�� is a nonlinear process dependent 
tensor functional H	�� of the macroscopic strain tensor ��� from the beginning at I � 0 up to time K. 
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The computation of its rate in eq. (2-1) leads to the tangential strain concentration tensor VW	�� - see  [6] 
and [7] as defined above. With the help of eq. (2-1), the rate of the average phase stress tensor �E	��� is 
computed:  
 

                �ER 	��	K�� 
�  S�E	(�	P��ST �  >�E	(�	P��>��	(�	P��  S��	(��ST �  >�E	(�	P��>��	(�	P�� 
 VW	��: ��R �                                                (2-2)                                                             

 

Since N different phases 	�� " with volume fraction X	�� �  Y�	(�Y|����|  – are considered, the rate of the 

average macro stress tensor is computed from the rate of the macroscopic strain by means of the 
tangential strain concentration tensor VW	��, the change of the phase stress tensor with respect to the 
phase strains and the volume fractions: 
            �ER � �  ∑  X	��\�O� >�E	(��>��	(�� 
 VW	��: ��R �  Q   @]C ^  ∑  X	��\�O� >�E	(��>��	(�� : VW	��  Q  �ER � � @]C: ��R �              (2-3) 

                                             
The fibres behave linearly elastic. Since epoxy matrices show significantly nonlinear elastic response 
to shear loading, the matrix phase is modeled with a Ramberg-Osgood type of material equation _�` � a�bc� ) d e1 "  g�`h ij(kjl m 	no��p q�` " c� qrr g�` with Young’s modulus E, shear modulus G, 

Poisson’s ratio s, and shear parameter d. The exponent t determines the degree of non-linearity. The 
GMC approach discretises the RVE by subdividing the displacement field !	
� which is then 
piecewisely approximated by linear functions defined on each subcell. The continuity of tractions is 
ensured along all subcell interfaces Γuvw. Displacement discontinuities $!	
�% � !	
b� "  !	
o�,
 �  Γuvw � Γx� y  Γ�� are conceded to arise at the common boundaries Γx� of neighbouring fibre 
and matrix subcells in order to model the imperfect bond of the phases. Predefined subcell interfaces 
Γ�� of adjacent matrix cells serve also as localization nuclei for the initiation and growth of crack 
surfaces within the matrix phase. The interface traction vector z � E{n on the interboundaries of the 
subcells with the normal {n is related to its kinematical counterpart, i.e. the separation vector $!%, via 
the traction-separation model given by [8]. This model involves two scalar valued stress and 
separation measures, both defined over past time I | K: 
 

Kc	I� �  }i�P~	L���� m# ) iP�	L��� m# ) iP�	L��� m#
,   �!	I�� � }i�$�~	L�%��� m# ) i$��	L�%�� m# ) i$��	L�%�� m#       (2-4) 

with the norm � � of the vector components 	 �n, 	 �P, and 	 �� in normal, tangential, and bi-
normal direction of the fibre. Herein, the normal and shear strengths are denoted by ��and �� 
respectively, whereas the characteristic length parameters �� and �� determine the ductility in the 
traction-separation-model. As long as maxL�PKc	I� � 1 holds, neither elastic compliance nor damage 
of the bond between the subcells occurs, i.e. the bond flexibility and $!% are zero, otherwise the 
traction vector z becomes a nonlinear vector-functional �	$!%, �� of the current jump vector and the 
process dependant internal variable �	K� ^ min�max�!	I��LONLOP , 1�: 
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The penetration of phases is numerically suppressed by setting Kn � ��$�n% with the penalty stiffness ��. The continuity conditions, imposed on the microfields of stresses and displacements at the subcell 
boundaries [2] together with the constitutive equations of the interface model, lead to a system of 
nonlinear algebraic equations. Their solution finally provides the tangential strain concentration 
tensors VW	�� for all subcell domains 	��, see [9]. Hence, the macroscopic stress tensor �E� can be 
computed by numerical time integration of equation (2-3)3 from the effective constitutive tensor @]C 
according to eq. (2-3)2 for the given macroscopic strain process ��	K��. 



 

 

 
3. Failure analysis of UD laminae based on the homogenous continuum 

3A.Failure criteria 
The development of physically based failure criteria for inter fibre failure (IFF) in long fibre-
reinforced polymer composites has been the focus of research for many years [10]. The Puck IFF 
criteria are most promising for brittle, plastic unidirectional (UD) laminates - see Fig. 3. The UD ply 
behaves transversely isotropic in both cases, elasticity and failure. Puck assumes a Mohr–Coulomb 
type of failure criterion for loading transverse through the fiber direction. Failure is assumed to be 
caused by the normal and shear components acting on the action plane of stress 	qn, In�, InP� - see 
Fig. 3. Positive normal stress on this plane promotes fracture while a negative one increases the 
material’s shear strength, thus, impeding fracture. Puck’s stress based failure criteria enable the 
computation of the material exposure f�,�xx	�� as a failure indicator.  
 

 
 

Figure 3. Schematic representation of failure modes and failure plane stresses taken from [10] 
 
The values of f�,�xx	�� range between 0, where the material is unstressed, and up to 1, denoting the 
onset of IFF. The material exposure f�,�xx	�� is a function of the stress state E and the orientation � of 
the stress action plane against the thickness direction. The fracture plane stresses are obtained by 
rotating the three dimensional stress tensor from material coordinates to the fracture plane. The master 
failure surface on the fracture plane is defined in terms of Mohr-Coulomb stresses on the fracture 
plane, thus, yielding the following failure criteria [11]: 
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The only unknown parameters in these equations are ¢�£	¤�, ��£	¥�, and ���¥  which can be expressed by 
the following equations : ¢�£	¤�

��£	¥� � ¢��	¤�
���	¥�   InP#

InP# ) In�# ) ¢��	¤�
���   InP#

InP# ) In�#  
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2 i1 ) ¢��	o�m 

wherein ��	b�, ���, ��	o�  denote the material strength parameters, and ¢��	¤�, ¢��	¤�  are Puck constants.  
 
 



 

 

3B. Continuum damage model 
The post-failure analysis is based on the plane stress continuum damage model in [12] which is 
extended into 3D stress space with additional modes of damage by introducing a third array of cracks 
orthogonal to the other two. This damage model characterizes the growth of damage by a decrease in 
the stiffness of the material. A set of damage variables §+ is introduced to relate the onset and growth 
of damage to stiffness losses in the material. The compliance matrix ̈ for the damaged material is:  
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As suggested in [12], the rate of the damage variables §R �, assembled in the vector ¶R , are governed by 
the damage rule in the form of ¶R �  ∑ ·�¸ �BS¹u�O� º�, where ·� controls the amount of growth and º� 
provides coupling between the individual damage modes. In the present model, the three different 
failure modes, denoted as fiber mode, perpendicular and parallel matrix modes, are expressed by 
vectors º� and i=1, .., 3. They couple the damage variables according to : 

                                                          4º�5 �
ª«
««
«¬
1 0 00 1 00 0 11 1 00 0 11 1 1³́

´́
µ́
                                                               (3-4) 

In the softening range of post failure, the damage variables can be obtained in the form of § � 1 "» ?¼	�o4½5¼�, ¾   1 where ¿ is the strain softening parameter and ¾ is the damage threshold. At the 
onset of failure, triggered by the criteria, the value of §+ is zero. As the damage progresses, §+ 
increases and, therefore, eventually diminishes the stiffness of the material until it reaches a final value 
of zero. 
 

4. Numerical Examples 

The Generalized Method of Cells is implemented as the constitutive model into the finite element code 
FEAP, see [13], and used with the enhanced 3D-solid displacement element as outlined in [14]. A 
multi-layered solid element with thickness homogenization at the laminate level is available in the 
code of [15], where the failure and damage model, based on the homogenous continuum, is 
implemented and further referred as meso-level approach. The fibre orientation can be defined for 
arbitrary angles with respect to the global co-ordinate system. The examples are computed by both, a 
coupled two scale analysis, as outlined in section 2, and a meso-level approach with the multi-layered 
solid element and compared below.  

4A. Verification example: Thin-walled tube 
The thin-walled, single-layered composite tube in Fig. 4 a) serves as a verification example for the 
coupled twoscale analysis and the meso-level approach with the multi-layered solid element. The inner 
and outer radii of the tube are ¾+ � 16.5 mm and ¾Ã � 18.5 mm with a tube length of ÅÆ � 100  mm. 
The angle of the filament winding relative to the cylinder axis Ç� is denoted by È. The composite 



 

 

consists of the E-glass-fibre reinforced epoxy resin MY750 with a fibre volume content of ÉÊ � 60%. 
The strength values and stiffness parameters of the constitutive models, used to describe the 
mechanical behavior of the phases, are taken directly from the World-Wide Failure Exercise (WWFE) 
[16] pp 37 whereas the interface parameters are inversely identified with the help of the experimental 
data published as part of the WWFE – see [17]. Tab. 1 gives the elasticity parameters for the phase 
materials, as well as the parameters of the interface model according to Lissenden for the fibre-matrix-
bond and matrix fracture. The strength parameters, Puck constants in the failure criteria in (3-1) or (3-
2) and the elasticity moduli of the E-glass-fiber reinforced epoxy resin MY750 are taken from the 
WWFE [16], pp 36, as well as [11], pp 846 and added also to Table 1. The FE mesh consists of 36 
elements in circumferential direction and one element through the thickness of the layer. The tube is 
discretized by 10 elements in axial direction. Along the boundary at Ç� � 0, degrees of freedom for �� 
and �Ì are suppressed where �� is the axial and �Ì the tangential displacement component. The load 
is applied in terms of prescribed displacements versus time up to the end value ��	l� � 0.3 mm at the 
far end of the tube along the edge at Ç� � Å in axial direction.  The fibres run in circumferential 
direction (È � 90°�. Hence, the normal stress caused is perpendicular to the fibres. 
 

Phase material Ï[GPa] Ð[GPa] qN [GPa] n d[GPa] 
E-glass ÉÊ � 0.6%. 74 30.8 - - - 
epoxy resin MY750 4.9 1.9 117.5 9 2.0 

Interface model ���[MPa] ���[MPa] ���[Ñ¿] ���[Ñ¿] - 
fibre-matrix-bond 48 77 0.004 0.12 - 

matrix fracture surfaces 15 60 0.004 0.12 - 
UD composite  

strength parameters 
 ��b[MPa] 

 ���[MPa] 
 ��o[MPa] 

 ��b[MPa] 
 ��o[MPa] 

 40 73 145 1280 800 
Puck constants ¢��	b� ¢��	o� ¢��	¤�   

 0.25 0.3 0.13   
elasticity moduli Ï�[GPa] Ï�[GPa] Ð��[GPa] É�� É�� 

 45.6 16.2 5.831 0.278 0.4 
Table 1. Parameters for E-glass, epoxy resin MY750, interface and composite 

 
 

   
Figure 4. a) Geometry of thin-walled tube. b) Tension stress q�� vs. strain _�� in coupled-two scale 
analysis  and meso-level approach  

 
Fig. 4 b) depicts the tensile stress q�� versus the strain _�� � ��	100�/Å due to the prescribed 
displacement relative to the tube length ��	Å�/Å. Up to failure at the stress level of q���ÃÆ � 40.5 MPa 
in the coupled twoscale analysis or 40 MPa in the meso-level approach, the normalized load-
displacement is linear. After reaching the strength limit, the stress-strain diagram deviates in the 

                                                        
1 Nonlinear behavior and stress strain curves and data points are provided 



 

 

coupled two-scale analysis from the meso-level approach. The stress curve gradually falls after failure. 
The results from both the methods match with the experimental data from WWFE [16].  
In load case 2, a path-controlled torsional deflection is applied at the far end of the tube. The 
prescribed deformation causes a homogenous shear stress in the tube. Hence, the composite is exposed 
to an axial shear loading due to the fibre orientation. The load bearing capacity of the tube under 
torsional loading is reached for the shear stress at I�Ì Ö 70 MPa in both the approaches compared to 
an experimental axial shear strength value ��� of 73 MPa. In load case 3, combined tension/shear 
stress loadings are applied and the computed fracture curves are compared to experimental results, 
which shall be explained in the talk. 
 
4B. Validation example: Cross-ply laminate under uniaxial tensile loading 
The cross-ply laminate with four UD layers Ø0°/90°/90°/0°Ú in Fig. 5 is made of E-glass/MY750 
epoxy resin with sÊ � 0.62 and used to validate both approaches. The test specimen's length is ÅÆ � 200 mm, the width ÅÛ � 25 mm and the total thickness  ÅÜ � 4 Ý 0.475 � 1.9 mm. The fibre 
direction in the outer layers coincides with the loading direction. The two-scale FE-model in Fig. 5 
consists of three solid elements through the thickness, whereas the FE model for the meso-level 
approach uses one multi-layered 8-node (linear) solid (MLS) element with four integration points to 
take into account the various fibre orientations given above. The option of representing several plies in  

 
Figure 5. FE-model of cross-ply laminate: longitudinal view, cross section and fibre angles 

 
one solid element and more such elements across the thickness is implemented into the code of [15]. 
Like any linear brick element, the MLS resolves the 3D stress state, but may contain n-layers from the 
composite laminate. It is assumed to be small in comparison to the overall size of the composite 
thickness. Its in-plane behavior is treated by through-the-thickness integration, whereas the transverse 
properties in the shear and normal mode for the hexahedron element must be based on the concept of a 
homogeneous substitute material, since the underintegrated linear element relies on a uniform 
membrane stress state. Hence, homogenization of the layer dependent properties is required through 
the thickness of the element. The homogenization result is bounded by Voigt’s [18] and Reuss’s [19] 
hypotheses. The Reuss bound for laminae, connected in series, is close to the effective elasticity 
modulus in transverse normal direction, whereas the Voigt bound for laminae, assembled in parallel, 
serves as an upper limit and approximates the transverse shear modulus of the laminate tightly. Both 
bounds are implemented into the code of [15] to compute the transverse stresses from the strains. 
 
The boundary conditions, imposed on the nodal displacements do not constrain lateral extensions of 
the specimen. The simulation is controlled by the displacement �Þ given at the right end with ÅÞ �200 mm. In Fig. 6, the average laminate stress qÞÞ is plotted versus the average strain _ÞÞ �  �Þ/ÅÞ as 
well as the lateral average strain _ßß �  �ß/Åß as founded by tests published in [20]. At the average 
longitudinal stress qÞÞ � 116 MPa, first cracks perpendicular to the loading direction are observed 
experimentally in the embedded layer with fibres in 90°-direction, causing a slight reduction of the 
laminate's tensile stiffness, represented by the small kink in the stress-strain diagram. At qÞÞ � 325 
MPa, cracks occur parallel to the loading direction at the outer layers in the test, see [20]. The damage 
is due to the tensile stress qßß resulting from the lateral strain _ßß which is obstructed by the large 
stiffness of the inner layers in loading direction. At qÞÞ � 600 MPa, final failure of the laminate is 
provoked by tensile fibre fracture in the upper and lower layer.  
The green curves in Fig. 6 (left) are computed with the two-scale analysis by using the UD parameters 
for the composite material as given in Tab. 1. Beyond the stress level of qÞÞ Ö 80 MPa, the softening 
of the embedded layer causes a physically premature decrease of the computed laminate stiffness. It is 



 

 

a matter of common knowledge that the constitutive behavior of a single UD-layer differs from that of 
the same layer being part of a laminate structure [21]. Experiments reveal that the embedded lamina 
withstands higher loading than the isolated one. Hence, underestimating the stiffness and strength of 
the laminate is not unexpected, if UD-parameters from a single laminae are used for the prediction of 
the overall behavior of a multilayer composite. Longitudinal cracks at the covering layers do appear in 
the simulation too early, here, at an average stress of qÞÞ Ö 300 MPa and lead to the loss of 
convergence of the computation. Alternatively, if the matrix and the bond stress limits are set equal to 
the bulk strength of the resin, the blue stress-strain-curves in Fig. 6 are predicted for the mechanical 
response of the cross-ply laminate. Obviously, the influence of damage in the embedded layer on the 
decrease of the laminate stiffness is portrayed quite well. The final failure simulation of the composite, 
caused by fibre fracture in the outer layers, is not part of the micromodel at hand but might be easily 
incorporated into the cell’s ansatz by defining additional fracture planes in the cross section of the 
fibres. 

                            
Figure 6. Average stress 	qÞÞ) vs. longitudinal 	_ÞÞ� and transverse strain 	_ßß� in coupled-two scale 
analysis (left) and meso-level model (right) and compared to experimental results from [20] 
 
In the meso-level model the first transverse cracks in the 90°-layers appear at the average stress level 
of qÞÞ Ö 120 MPa and the longitudinal cracks in the 0°-layers appear at qÞÞ Ö 340 MPa. At qÞÞ Ö640 MPa, final failure of the laminate is computed by tensile fibre fracture in the upper and lower 
layers.  
 
 
5. Summary and concluding remarks 

In this contribution the efficiently reformulated version of the Generalized Method of Cells is used as 
the constitutive model for unidirectionally reinforced composites in the context of multiscale methods. 
The meso-level model with the 3D Puck failure criteria and anisotropic continuum damage mechanics 
is very effective in analyzing thick multi-layered structures having a large number of plies. The 
numerical implementation of the coupled twoscale analysis and the meso-level approach has been 
verified by analysing a single-layered thin-walled tube under homogeneous tensile and shear stress 
loading. The cross-ply laminate under uniaxial tension is used as the first example for the validation 
for both approaches. Further validation has to be done with test data, taken from non-homogenous 
states of stress in multi-layered composites. 
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