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Abstract

Multi-scale methods of microheterogeneous fibrefeeced plastic material are used for the analysis
of thick laminated composite structures with huaddref layers through the cross-section such as for
high pressure vessels. The conventional approatthtiaé layerwise discretization of the laminate is
often impractical, especially for non-linear stgpdtep analysis due to inelastic behavior and tesns
effects. The overall behavior of thick multi-laydriber-reinforced composite structures is acclyate
predicted by micro-mechanical homogenization at fimee-matrix level and meso-mechanical
homogenization at the laminate level. The mesollminate analysis is based on the 3D failure
criteria of Puck and anisotropic continuum damagecimanics. Both approaches are in good
agreement with each other as well as with experiaheesults.

1. Introduction

Structural analysis inevitably requires constitetisnodels linking the kinematic and equilibrium
equations mathematically. Though, it is not alwapsious how to describe a specific constitutive
behavior by phenomenological models appropriat&lyis holds true particularly in the case of
anisotropic composite materials which show loadedéent anisotropic damage evolution with
different modes of failure. Multi- or two-scale appches mean a useful tool for characterizing the
effective constitutive behavior of micro-heterogeme materials from the solution of microscale
boundary value problems. The anisotropic constitutiehavior at the larger scale results from the
interactions of the small scale components. Micrmaical models, as used here, base on the
concept of the statistically representative volwetement (RVE), which can be regarded as a sample
of the microstructure found by zooming in at theinity of a large scale material poiht, see Fig. 1.
The practical application of multi-scale approacheguires numerical methods for discretizing and
analyzing boundary value problems (BVP) on eachesoader consideration.
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Figure 1. Schematic sketch of two scale analysis



The macroscopic structural level is discretizedthmy finite element method in this work. Since the
constitutive equations are needed at every integrgioint of the macro structural finite element
discretization, the maximum number of discrete nscale models to be solved is equal to the total
number of integration points of the macro modelnt¢és high numerical efficiency of micro modeling
is essential. For this reason, the reformulatede@dized Method of Cells (GMC) is applied here, [1]
The original strain based version of the GMC by 2k the potential of a numerically much more
efficient reformulation without loss of accuracyrfhigher resolutions of the microscale stressiéiel
the High Fidelity Generalized Method of Cells (HFGMwas developed, see [3] and [4]. Though, the
improved resolution of stresses by the HFGMC demeahe numerical efficiency. Applying the
GMC seems a reasonable compromise between thaatiigfltargets of fidelity and efficiency. The
information from the macro- to the microscale isnsferred by prescribing the microscopic
displacement boundary conditions (BCs) dependentthen macroscopic strain tense}'at the
integration pointi. Alternatively, stress boundary conditions miglet formulated in terms of the
macro-stress tensor. In the reverse directionglamgle variableE¥ (scalars, vectors or tensors) are
commonly defined as the volume averéfjeof the corresponding small scale fi€Mi(x):
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with |Vgzyg| as the content of the volume of tR¥E, x as the position vector of a material point, &nd
as the domain of the RVE. It is emphasized thandigin (1-1) holds for the macroscopic strain only
in the case of a continuous displacement figfd Otherwise, the macro-strain is obtained as:
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with internal surfaced’; = 0Q; N dQ, (normal n = nlwith respect to phase ;) and displace-
ment jumps[u] = ulaq, — ulsn,, see Fig. 2 and [5]. The homogenized effectivestitutive tensor,
Chom» ON the large scale is defined as:

Chom'= —J, 20 ay (1-3)
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Figure 2. RVE with phase3;, inclusions of phas@,, and internal material interfacEs

2. Micromechanical analysiswith the Generalized M ethod of Cells

The Generalized Method of Cells (GMC) is basednenconcept of the representative volume element
which is a statistically representative patch &f tieterogeneous medium. It transforms the mecHanica
quantitiesf™ from the micro to the macro levE!! by averaging the variables over the voluFgg

of theRVE, see (1-1). In the case of a nonlinear behavidh@bonding or the nascency and evolution
of cracks, the average phase str@f?) of the material phas@) is a nonlinear process dependent
tensor functionald® of the macroscopic strain tengej from the beginning at = 0 up to timet.
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The computation of its rate in eq. (2-1) leadsh®tangential strain concentration ten&6? - see [6]

and [7] as defined above. With the help of eq.)2te rate of the average phase stress tdn$dy is
computed:
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SinceN different phasegi) — with volume fractionc® = _||V || -
RVE

average macro stress tensor is computed from tieeofathe macroscopic strain by means of the

tangential strain concentration tengif), the change of the phase stress tensor with respehe
phase strains and the volume fractions:

are considered, the rate of the

6()~

)= TV cD2N KD 6y 5 T = YN (DX RO L gy = G e) (2-3)

=1 a(E(L)) i=1 € a(e(l))

The fibres behave linearly elastic. Since epoxyrited show significantly nonlinear elastic response
to shear loading, the matrix phase is modeled witRamberg-Osgood type of material equation

€ = [1+"+1“ (1- SU)(G”) (”‘1)]%- - %Gkk 8;; with Young’s modulusE, shear moduluss,

Poisson’s ratiw, and shear parametér The exponent determines the degree of non-linearity. The
GMC approach discretises the RVE by subdividing thgplacement fieldu(x) which is then
piecewisely approximated by linear functions dedire each subcell. The continuity of tractions is
ensured along all subcell interfacEg,,. Displacement discontinuitiefu(x)] = u(x*) — u(x"),

X € I'sup =T'pm U I'ym are conceded to arise at the common boundBfgsof neighbouring fibre
and matrix subcells in order to model the impertemd of the phases. Predefined subcell interfaces
I'ym Of adjacent matrix cells serve also as localizatioclei for the initiation and growth of crack
surfaces within the matrix phase. The interfacetiva vectort = oe,, on the interboundaries of the
subcells with the norma,, is related to its kinematical counterpart, i.e. $b@aration vectdn], via
the traction-separation model given by [8]. Thisdaloinvolves two scalar valued stress and
separation measures, both defined over pastttime:
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with the norm|| || of the vector components ),,( ), and( ), in normal, tangential, and bi-
normal direction of the fibre. Herein, the normaldashear strengths are denoted Ryand R
respectively, whereas the characteristic lengtlarpatersu; andu, determine the ductility in the
traction-separation-model. As long max,<;t,(t) < 1 holds, neither elastic compliance nor damage
of the bond between the subcells occurs, i.e. thed flexibility and [u]] are zero, otherwise the
traction vectort becomes a nonlinear vector-functio&[u], q) of the current jump vector and the
process dependant internal variadp(e) := min{max||u(z)||ZZ§, 1}:
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The penetration of phases is numerically supprelsgesttingt,, = K, [u,] with the penalty stiffness
K,. The continuity conditions, imposed on the micetafs of stresses and displacements at the subcell
boundaries [2] together with the constitutive etpret of the interface model, lead to a system of
nonlinear algebraic equations. Their solution fingdrovides the tangential strain concentration
tensorsA® for all subcell domainé), see [9]. Hence, the macroscopic stress tefisprcan be
computed by numerical time integration of equat{@8); from the effective constitutive tens@t
according to eq. (2-3¥or the given macroscopic strain procésg)).



3. Failure analysis of UD laminae based on the homogenous continuum

3A. Failure criteria

The development of physically based failure critefor inter fibre failure (IFF) in long fibre-
reinforced polymer composites has been the focues#arch for many years [10]. The Puck IFF
criteria are most promising for brittle, plasticidirectional (UD) laminates - see Fig. 3. The UD pl
behaves transversely isotropic in both cases,i@tgsand failure. Puck assumes a Mohr—Coulomb
type of failure criterion for loading transversedhgh the fiber direction. Failure is assumed to be
caused by the normal and shear components actineoaction plane of stre$s,, t,1,7,t) - S€e
Fig. 3. Positive normal stress on this plane presdtacture while a negative one increases the
material’'s shear strength, thus, impeding fractieck’'s stress based failure criteria enable the
computation of the material expostiggrr(¥) as a failure indicator.

Fiber failure

Figure 3. Schematic representation of failure madeksfailure plane stresses taken from [10]

The values ofg ;gr(9) range between 0, where the material is unstressetiup to 1, denoting the
onset of IFF. The material expostiggrr () is a function of the stress stateand the orientatioti of

the stress action plane against the thicknesstidinecThe fracture plane stresses are obtained by
rotating the three dimensional stress tensor fratenal coordinates to the fracture plane. The enast
failure surface on the fracture plane is definedeirms of Mohr-Coulomb stresses on the fracture
plane, thus, yielding the following failure criterfil1]:
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The only unknown parameters in these equationpi eR(A) andR#, which can be expressed by
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the following equations :
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Whereian'),R l",Ri_) denote the material strength parameters;éﬁ)dpﬁ) are Puck constants.



3B. Continuum damage model

The post-failure analysis is based on the planesstcontinuum damage model in [12] which is
extended into 3D stress space with additional modesmage by introducing a third array of cracks
orthogonal to the other two. This damage modelattarizes the growth of damage by a decrease in
the stiffness of the materiah set of damage variables is introduced to relate the onset and growth
of damage to stiffness losses in the material.cmepliance matri’§ for the damaged material is:

! _Yn Va1 0 0 0
(1_‘01)E1 E, E3
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As suggested in [12], the rate of the damage vimsaly, assembled in the vectar, are governed by
the damage rule in the form 6f = Z?ﬁ"des ¢; q;, whereg; controls the amount of growth ang
provides coupling between the individual damage @sodn the present model, the three different
failure modes, denoted as fiber mode, perpendicatal parallel matrix modes, are expressed by
vectorsq; andi=1, .., 3 They couple the damage variables according to :

1 0 0

[q;] = (3-4)
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In the softening range of post failure, the damaaeables can be obtained in the formwot= 1 —

1 m
em(7I"] ), r =1 wherem is the strain softening parameter angs the damage threshold. At the
onset of failure, triggered by the criteria, thdueaof w; is zero. As the damage progresses,
increases and, therefore, eventually diminishestiffaess of the material until it reaches a finalue
of zero.

4. Numerical Examples

The Generalized Method of Cells is implementechasconstitutive model into the finite element code
FEAP, see [13], and used with the enhanced 3D-slifiglacement element as outlined in [14]. A
multi-layered solid element with thickness homogation at the laminate level is available in the
code of [15], where the failure and damage modeked on the homogenous continuum, is
implemented and further referred as meso-level ggmtr. The fibre orientation can be defined for
arbitrary angles with respect to the global comatk system. The examples are computed by both, a
coupled two scale analysis, as outlined in se@icand a meso-level approach with the multi-layered
solid element and compared below.

4A. Verification example: Thin-walled tube

The thin-walled, single-layered composite tube ig. B a) serves as a verification example for the
coupled twoscale analysis and the meso-level appreéh the multi-layered solid element. The inner
and outer radii of the tube are= 16.5 mm andr, = 18.5 mm with a tube length df, = 100 mm.
The angle of the filament winding relative to thdimder axisxs is denoted byd. The composite



consists of the E-glass-fibre reinforced epoxyrrddl'750 with a fibre volume content of = 60%.

The strength values and stiffness parameters of ctivestitutive models, used to describe the
mechanical behavior of the phases, are taken Wifeom the World-Wide Failure Exercise (WWFE)
[16] pp 37 whereas the interface parameters amrsely identified with the help of the experimental
data published as part of the WWFE — see [17]. Tafpves the elasticity parameters for the phase
materials, as well as the parameters of the irtenfaodel according to Lissenden for the fibre-matri
bond and matrix fracture. The strength parameRarsk constants in the failure criteria in (3-1)8&r

2) and the elasticity moduli of the E-glass-fibemforced epoxy resin MY750 are taken from the
WWEFE [16], pp 36, as well as [11], pp 846 and addist to Table 1. The FE mesh consists of 36
elements in circumferential direction and one eleinilrough the thickness of the layer. The tube is
discretized by 10 elements in axial direction. AyJahe boundary at; = 0, degrees of freedom faor;
andu, are suppressed wheug is the axial and., the tangential displacement component. The load
is applied in terms of prescribed displacementsugtime up to the end valug(l) = 0.3 mm at the

far end of the tube along the edgexat=1[ in axial direction. The fibres run in circumfetiah
direction @ = 90°). Hence, the normal stress caused is perpendicuthe fibres.

Phase material E[GPa] G[GPa] gy [GPa] n I'[GPa]
E-glassvy = 0.6%. 74 30.8 - - -
epoxy resin MY750 4.9 1.9 117.5 9 2.0

I nterface model Ry, [MPa] Ry[MPa] | wuyy[pum] uy[um] -

fibre-matrix-bond 48 77 0.004 0.12 -
matrix fracture surfaces 15 60 0.004 0.12 -

UD composite
strength parameters Ri[MPa] | R, [MPa] | Ri[MPa] | R/[MPa] | Rj[MPa]

40 73 145 1280 800

Puck constants pfﬂ) pi") 'Pf_i)

0.25 0.3 0.13
elasticity moduli E,[GPa] E [GPa] | G, [GPa] VL Vi
45.6 16.2 5.83 0.278 0.4

Table 1. Parameters for E-glass, epoxy resin MYi#86rface and composite
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Figure 4. a) Geometry of thin-walled tube. b) Tensstressr;; vs. straines; in coupled-two scale
analysis and meso-level approach

Fig. 4 b) depicts the tensile stresg; versus the strai@;; = u3(100)/l due to the prescribed
displacement relative to the tube lengt{l)/L. Up to failure at the stress level ®f;** = 40.5 MPa

in the coupled twoscale analysis @0 MPa in the meso-level approach, the normalized load-
displacement is linear. After reaching the strenigttit, the stress-strain diagram deviates in the

1 Nonlinear behavior and stress strain curves aralizints are provided



coupled two-scale analysis from the meso-level @ggir. The stress curve gradually falls after failur
The results from both the methods match with theeamental data from WWFE [16].

In load case 2, a path-controlled torsional deibectis applied at the far end of the tube. The
prescribed deformation causes a homogenous shess &t the tube. Hence, the composite is exposed
to an axial shear loading due to the fibre orieotatThe load bearing capacity of the tube under
torsional loading is reached for the shear stresga~ 70 MPa in both the approaches compared to
an experimental axial shear strength vakyg of 73 MPa. In load case 3, combined tension/shear
stress loadings are applied and the computed feacurves are compared to experimental results,
which shall be explained in the talk.

4B. Validation example: Cross-ply laminate undeiaxial tensile loading

The cross-ply laminate with four UD layef8’/90°/90°/0°] in Fig. 5 is made of E-glass/MY750
epoxy resin withu; = 0.62 and used to validate both approaches. The tesinsge's length is

ly =200 mm, the widthl, = 25 mm and the total thicknes§, = 4 x 0.475 = 1.9 mm. The fibre
direction in the outer layers coincides with thadimg direction. The two-scale FE-model in Fig. 5
consists of three solid elements through the tleskn whereas the FE model for the meso-level
approach uses one multi-layered 8-node (lineaiyl §MLS) element with four integration points to
take into account the various fibre orientationgegiabove. The option of representing several plies

Figure 5. FE-model of cross-ply laminate: longinaliview, cross section and fibre angles

one solid element and more such elements acroshith@mess is implemented into the code of [15].
Like any linear brick element, the MLS resolves Biestress state, but may contain n-layers from the
composite laminate. It is assumed to be small imparison to the overall size of the composite
thickness. Its in-plane behavior is treated byugtethe-thickness integration, whereas the trassver
properties in the shear and normal mode for thaledron element must be based on the concept of a
homogeneous substitute material, since the uneégrated linear element relies on a uniform
membrane stress state. Hence, homogenization dayiee dependent properties is required through
the thickness of the element. The homogenizatisunltrés bounded by Voigt’'s [18] and Reuss’s [19]
hypotheses. The Reuss bound for laminae, conndéateeries, is close to the effective elasticity
modulus in transverse normal direction, whereasvibigt bound for laminae, assembled in parallel,
serves as an upper limit and approximates theveass shear modulus of the laminate tightly. Both
bounds are implemented into the code of [15] tomate the transverse stresses from the strains.

The boundary conditions, imposed on the nodal dcghents do not constrain lateral extensions of
the specimen. The simulation is controlled by tiepldcementu, given at the right end with, =

200 mm. In Fig. 6, the average laminate stregsis plotted versus the average straip = u, /I, as
well as the lateral average straip, = u, /I, as founded by tests published in [20]. At the ager
longitudinal stressr,,, = 116 MPa, first cracks perpendicular to the loadingediion are observed
experimentally in the embedded layer with fibre®in-direction, causing a slight reduction of the
laminate's tensile stiffness, represented by thallskink in the stress-strain diagram. &, = 325
MPa, cracks occur parallel to the loading directithe outer layers in the test, see [20]. Theadgm

is due to the tensile stresg, resulting from the lateral strai,,, which is obstructed by the large
stiffness of the inner layers in loading directié.o,,, = 600 MPa, final failure of the laminate is
provoked by tensile fibre fracture in the upper ower layer.

The green curves in Fig. 6 (left) are computed Withtwo-scale analysis by using the UD parameters
for the composite material as given in Tab. 1. Belythe stress level of,,, ~ 80 MPa, the softening

of the embedded layer causes a physically premdeoease of the computed laminate stiffness. It is



a matter of common knowledge that the constitubebavior of a single UD-layer differs from that of
the same layer being part of a laminate structtg. [Experiments reveal that the embedded lamina
withstands higher loading than the isolated onenddeunderestimating the stiffness and strength of
the laminate is not unexpected, if UD-parametesmfa single laminae are used for the prediction of
the overall behavior of a multilayer composite. gibadinal cracks at the covering layers do appear i
the simulation too early, here, at an average stdso,, ~ 300 MPa and lead to the loss of
convergence of the computation. Alternativelyhié tmatrix and the bond stress limits are set egual
the bulk strength of the resin, the blue stressirsiturves in Fig. 6 are predicted for the mechalnic
response of the cross-ply laminate. Obviously,itfieence of damage in the embedded layer on the
decrease of the laminate stiffness is portrayetkquell. The final failure simulation of the comjites
caused by fibre fracture in the outer layers, ispgast of the micromodel at hand but might be gasil
incorporated into the cell’'s ansatz by defining iiddal fracture planes in the cross section of the
fibres.
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Figure 6. Average stregs,,) vs. longitudinal(e,,) and transverse straa,,) in coupled-two scale
analysis (left) and meso-level model (right) anthpared to experimental results from [20]

In the meso-level model the first transverse cragkbe90°-layers appear at the average stress level
of o,, = 120 MPa and the longitudinal cracks in tb&layers appear at,, =~ 340 MPa. Ato,, =

640 MPa, final failure of the laminate is computed teysile fibre fracture in the upper and lower
layers.

5. Summary and concluding remarks

In this contribution the efficiently reformulate@nsion of the Generalized Method of Cells is used a
the constitutive model for unidirectionally reinded composites in the context of multiscale methods
The meso-level model with the 3D Puck failure crdtend anisotropic continuum damage mechanics
is very effective in analyzing thick multi-layeredructures having a large number of plies. The
numerical implementation of the coupled twoscalalysis and the meso-level approach has been
verified by analysing a single-layered thin-walledbe under homogeneous tensile and shear stress
loading. The cross-ply laminate under uniaxial il@mgs used as the first example for the validation
for both approaches. Further validation has to dxeedwith test data, taken from non-homogenous
states of stress in multi-layered composites.
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